
P H Y S I C A L R E V I E W L E T T E R S week ending
2 MAY 2003VOLUME 90, NUMBER 17
Electron-Phonon Scattering in Quantum Point Contacts
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We study the negative correction to the quantized value 2e2=h of the conductance of a quantum point
contact due to the backscattering of electrons by acoustic phonons. The correction shows activated
temperature dependence and also gives rise to a zero-bias anomaly in conductance. Our results are in
qualitative agreement with recent experiments studying the 0.7 feature in the conductance of quantum
point contacts.
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equilibrium phonons at relatively high temperatures [20]. conductance G0.
The quantization of conductance in units of G0 �
2e2=h observed [1] in narrow one-dimensional constric-
tions—the quantum point contacts (QPC) —is well
understood within a simple model of noninteracting elec-
trons [2]. In this approach the electrons are backscattered
by the effective one-dimensional potential created by
the walls of the constriction, and the conductance follows
the energy dependence of the transmission coefficient.
In the last few years a number of experiments [3–8]
studied the deviations of the conductance from this pic-
ture that appear as a shoulderlike feature at a conductance
near 0:7G0. Several experiments have demonstrated that
when a strong in-plane magnetic field is applied, this
0.7 anomaly evolves into the spin-polarized conductance
plateau at 0:5G0 [3–5]. This observation led to the pro-
posal that the anomaly originated from a spin-dependent
mechanism [3]. Theoretical attempts to understand the
0.7 anomaly mostly followed this conjecture [9–17].

Here we concentrate on another feature of the 0.7anom-
aly, namely, its strong temperature dependence. The ex-
periments [3,5,6] showed that the anomalous shoulder
is weak at the lowest available temperatures but grows
when the temperature is increased. A detailed study [6]
revealed that the correction to the conductance follows an
Arrhenius law

�G / e�TA=T (1)

with the activation temperature TA of the order of 1 K. The
activated temperature dependence implies that a certain
backscattering mechanism turns on at temperature T �
TA and leads to partial suppression of the conductance.
The phenomenological proposals for this mechanism in-
clude scattering off a plasmon [18] or a spin wave [16]
localized in the QPC, a low-lying spin-split subband [12],
as well as spin-flip scattering by a Kondo impurity [5,17].

In this Letter we explore another backscattering
mechanism, which results in the activated temperature
dependence (1), namely, the scattering of electrons by
acoustic phonons. This mechanism was discussed in the
cases of scattering by surface acoustic waves [19] and by
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At low temperatures the effect of electron-phonon scat-
tering on transport in quantum wires is strongly sup-
pressed. Indeed, in order to backscatter an electron at
the Fermi level the phonon must have a wave vector q �
2kF in the direction along the wire. Thus the minimum
energy of such a phonon is

TA � 2 �hskF �
������������
EsEF

p
; (2)

where s is the speed of sound, EF is the Fermi energy of
electrons in the wire, Es � 8 ms2, and m is the effective
mass of electrons. At temperatures T � TA the occupa-
tion numbers of such phonons and their contribution to
the conductance are exponentially suppressed [Eq. (1)].
For typical GaAs quantum wires one can estimate Es �
0:3 K and EF � 100 K, resulting in TA � 5 K. Thus the
electron-phonon scattering is negligible in typical low-
temperature experiments. On the other hand, the electron
density in a QPC tuned into the vicinity of the first
conductance step is very low. Estimating the Fermi en-
ergy at the center of a QPC to be about 2 K, one obtains a
value of TA � 0:8 K, in reasonable agreement with ex-
periment [6].

To study transport in a QPC near a conductance step as
a function of the gate voltage, one has to account for the
effect of the confining potential. We follow the idea of
Refs. [2,21] and model the QPC by a one-dimensional
electron gas in an external potential approximated as
U�x� � � 1

2m�
2x2. This approximation is valid in the

vicinity of the conductance step, provided that the po-
tential is sufficiently smooth. The transmission coefficient
of such a barrier is well known [22],

T0�E� �
1

1	 e�2�E= �h�
: (3)

In this Letter we concentrate on the case when the Fermi
energy is well above the top of the barrier, EF 
 �h�=2�.
In this regime the transmission coefficient (3) at the
Fermi level equals unity up to an exponentially small
correction, and even a weak backscattering by acoustic
phonons gives a significant correction (1) to the quantized
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The amplitude of electron backscattering by a phonon
with wave vector qx is proportional to the matrix element

I�qx� � h Rjeiqxxj Li; (4)

where  R;L�x� are the wave functions of the right- and
left-moving electrons. Because of the fact that the speed
of sound is small, the typical phonon energy �hsq is much
smaller than �h�. Therefore, in evaluating the matrix
element (4), the right- and left-moving electrons can be
assumed to have the same energy EF. At EF 
 �h� the
calculation of the matrix element (4) can be further
simplified by using semiclassical expressions for the
wave functions:

 R;L�x� �
���������������������

m
2� �hpF�x�

r
exp

�
�
i
�h

Z x

0
dx0pF�x0�

�
: (5)

Here the quasiclassical Fermi momentum is defined as
pF�x� �

��������������������������������
2m�EF �U�x��

p
.

We begin by studying the regime of small temperature
and bias, T; eV � TA, when the dominant contribution to
�G is due to long-wavelength phonons, qx � 2kF. (Here
kF �

�������������
2mEF

p
= �h is the electron wave vector at the center

of the QPC.) In this regime the integral (4) is easily
evaluated by the saddle-point method, and we find

I�qx� �
�

k2F

2� �h�EFqx
�������������������
4k2F � q2x

q 	
1=2
e�F1�qx=2kF�;

F1�u� �
2EF
�h�

�arccos u� u
��������������
1� u2

p
�:

(6)

Since EF is large compared to �h�, this result is valid even
when qx approaches 2kF, as long as F1 
 1.
176804-2
At zero temperature only the processes of emission of
phonons are allowed. The energy of the phonon cannot
exceed applied voltage, and thus the maximum possible
qx in such a process is eV= �hs. Therefore, at eV < TA the
correction to the differential conductance is exponen-
tially small as �G / exp��2F1�eV=TA��.

At nonzero temperature, both emission and absorption
of phonons are possible. In the most interesting limit of
zero bias, both processes are exponentially suppressed
at T � �hsq. Thus the total backscattering rate is small
as exp��2F1�qx=2kF� � �hsqx=T�. One can easily see that
this rate assumes its maximum value at qx �
2kF

������������������������������������������
1� � �h�TA=8EFT�2

p
. Thus, the temperature depen-

dence of the correction to the quantized conductance has
the following exponential behavior:

�G � �G� exp

�
�
TA
2T

�
arcsinv
v

	
��������������
1� v2

p 	�
; (7)

where v � �h�TA=8EFT. In a broad range of temperatures
�h�
EF
TA � T � TA this correction shows activated behav-

ior (1). The deviation from the Arrhenius law (1) at low T
is due to the presence of the potential barrier � 1

2m�
2x2

for the one-dimensional electrons in the QPC.
In order to find the preexponential factor G� in Eq. (7)

and to evaluate �G in the regime when either temperature
or voltage exceeds TA, one has to perform a more formal
calculation of the electron backscattering rate. Using the
golden rule approach, one can find the following expres-
sion for the scattering rate of a right-moving electron of
energy E to all the available left-moving states:
��1
R �E� � 2�

X
�

Z dq
�2��3

jM��q�j2

2!!q�

Z
dE0jI�qx�j2�1� fL�E0��

� fN�!q����E� E0 	 �h!q�� 	 �N�!q�� 	 1���E� E0 � �h!q��g: (8)
Here � labels the three possible polarizations of the
acoustic phonons, !q� / q is the phonon frequency, ! is
the mass density of the material, fL�E0� is the Fermi
function of the left-moving electrons in the contact, and
N�!q�� is the equilibrium occupation number of a phonon
of wave vector q and polarization �.

The exact form of the matrix element M��q� depends
on the nature of the electron-phonon coupling. At rela-
tively high temperatures [20] the deformation potential
coupling dominates, and M��q� / q. However, at low
temperatures in GaAs the leading contribution is due to
piezoelectric coupling, for which M��q� depends on the
direction of q, but not on its length q.

The backscattering of electrons by phonons reduces the
total current carried by the right-moving electrons of
energy E in the contact. One can therefore find the cor-
rection to the total current I � G0V by integrating the
backscattering rate (8) with the occupation numbers of
the respective states:
�I � �2e
Z 1

�1
���1
R �E�fR�E� � ��1

L �E�fL�E��dE: (9)

Here the factor of 2 accounts for the electron spins; the
scattering rate ��1

L for left-moving electrons is obtained
from Eq. (8) by replacing the subscripts R$ L.

The correction �I depends on the voltage V across the
contact through the difference of the chemical potentials
%R �%L � eV entering the Fermi functions fR�E� and
fL�E�. Thus, the correction to the conductance G0 of the
contact can be found as �G � d�I=dV. The resulting
expression for �G is simplified greatly if one makes the
following approximations. First, we again neglect the
dependence of the matrix element (4) on the energies E
and E0 and assume E � E0 � EF. Second, following the
standard procedure [23], we replace jM��q�j2 and the
sound velocities with their values jM�j

2 and s� averaged
over the directions of q. Then the integrals with respect
176804-2
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to the energies E and E0 as well as the transverse compo-
nents of q can be done analytically, and we find

�G � �G0T
X
�

jM�j
2

2!s2�

Z 1

�1
dqxjI�qx�j

2K��qx�: (10)

Here the function K��qx� is given by

K��qx� � 2 ln
1

1� e� �hs�jqxj=T
�

�hs�jqxj
T

	
eV � �hs�jqxj

2T
coth

eV � �hs�jqxj
2T

	
eV 	 �hs�jqxj

2T
coth

eV 	 �hs�jqxj
2T

: (11)

Unlike our previous results, the expression (10) for the
correction �G is not limited to the regime T; eV � TA.
In addition, when the temperature and voltage are small
compared to TA, Eq. (10) enables one to find the pre-
exponential factors, such as G� in Eq. (7).

To find G�, we first notice that at T � TA the longitu-
dinal phonon mode can be ignored. Indeed, the sound
velocity st of the transverse modes is lower than that of
the longitudinal mode, st < sl. Accordingly, the activa-
tion temperature (2) is lower for the transverse modes,
i.e., the longitudinal mode gives a negligible contribution
to �G at low temperatures. We therefore assume s � st in
the definition (2) of the activation temperature.

At zero bias and T � �hstjqxj, we find K�qx� �
�2 �hstjqxj=T�e

� �hstjqxj=T . The integral in Eq. (10) can then
be evaluated by the saddle-point method. As a result we
reproduce the exponential temperature dependence (7)
with the prefactor

G� � )G0

����������
2T
�TA

s
1��������������

1� v24
p ; ) �

2jMtj
2

!st

m

�h2�
: (12)

The dimensionless parameter ) determines the magni-
tude of the phonon backscattering effect on conductance
at T � TA. The numerical value of ) can be estimated
from the data available in the literature [23]. We write the
coupling parameter for the transverse phonons as jMtj

2 �
8
35 �ee14=*�

2, where for GaAs the permittivity * � 13:2*0,
and e14 � 0:16 C=m2. Substituting ! � 5:36 g=cm3, s �
st � 3� 103 m=s, and m � 0:067me, we find ) �
0:0052 meV= �h�.

We now turn to the evaluation of the correction (10) to
the conductance of the QPC in the regime when the
temperature and/or bias is large compared to TA �
2 �hstkF. In this case the typical wave vector q of the
phonons emitted or absorbed by electrons is large, q

kF. To find �G we notice that the matrix element I�qx� has
a peak near qx � 2kF � q. Thus, the electron backscat-
tering in this regime is dominated by phonons propagat-
ing in the direction normal to the channel. One can then
substitute the asymptotic expression forK� at qx ! 0 into
Eq. (10) and find �G in the form
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�G � �~))G0

�
T
TA

ln
T
TA

	
eV
2TA

coth
eV
2T

	
: (13)

Here the dimensionless parameter ~)) is defined as

~)) �
X
�

jM�j
2st

!s2�

m

�h2�
:

Because of the contribution of the longitudinal phonon
mode, ~)) > ). To estimate ~)) we write the average matrix
element as jMlj

2 � 12
35 �ee14=*�

2, Ref. [23]. Then using the
value sl � 5:12� 103 m=s of the velocity of longitudinal
sound in GaAs, we find ~)) � 0:0065 meV= �h�.

It is interesting to note that the negative correction (13)
to the quantized conductance G0 grows not only with
temperature, but also with bias. When V is increased,
more left-going states become available for the right-
moving electrons to scatter into, and the conductance
decreases. Thus, the electron-phonon scattering gives
rise to a zero-bias anomaly similar to the one observed
in experiments [5,6]. The linear shape of the zero-bias
peak at eV 
 T is consistent with the one observed in
Ref. [5]. The height of the peak is determined by the
limits of applicability of Eq. (13) at high bias. The most
important limitation of our derivation was the assumption
that the electrons are purely one dimensional. At suffi-
ciently high bias the typical wave vector q� eV= �hs of the
phonons becomes comparable to the width w of the one-
dimensional channel. Since the backscattering is mostly
due to the phonons propagating in the transverse direc-
tion, their coupling to the electrons at q > 1=w becomes
weak, and the linear dependence �G�V� given by Eq. (13)
saturates. This saturation occurs at eV � TA

�������������
�=EF

p
,

where �� �h2=mw2 is the subband spacing in the QPC.
Thus the height of the zero-bias peak in conductance is
expected to be of the order ~))G0

�������������
�=EF

p
.

The zero-bias peak observed in experiment [5] had a
height of about 0:15G0. To compare this result with our
estimate ~))G0

�������������
�=EF

p
, we use the device parameters �h� �

0:3 meV and � � 0:9 meV reported for similar samples
[24]. To estimate EF we assume the transmission coeffi-
cient T0�EF� � 0:9 and from Eq. (3) find EF � 1

3 �h�. This
results in the peak height ~))G0

�������������
�=EF

p
� 0:07G0, which is

reasonably close to the experimentally observed value
0:15G0.

Unlike the bias dependence of �G, the temperature
dependence �G � �~))G0�T=TA� ln�T=TA� obtained from
Eq. (13) at V � 0 does not saturate at T � TA

�������������
�=EF

p
. The

suppression of coupling to phonons with q > 1=w does
cut off the factor ln�T=TA�. However, the main linear in T
dependence of �G originates from the phonon occupation
numbers N�!q� � T= �h!q at T 
 �h!q and remains even
at T 
 TA

�������������
�=EF

p
[25]. The experiment [5] does show a

stronger suppression of conductance �G��0:3G0 at
high temperature than �G��0:15G0 at high bias. It is
also worth noting that a device with a higher value of
176804-3
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�h� � 2:6 meV and, consequently, lower ~)) shows a
weaker temperature dependence of �G [26].

The one-dimensional electron gas at the center of a
QPC at gate voltage corresponding to the first quan-
tized step of conductance is very dilute and, conse-
quently, Coulomb interactions are strong. We expect the
interactions to enhance the correction �G by a large
factor of order EF=TA, in analogy with the enhancement
of electron backscattering by an impurity in a Luttinger
liquid [27].

The phonon-induced backscattering effect discussed in
this Letter is not limited to the first conductance step.
Although most experiments observe the anomalous
shoulder in the conductance at the first step, several ob-
servations of similar behavior at the second [4,7,26] and
even higher steps [26] have been reported.

By applying an in-plane magnetic field B one can
polarize the electron spins and observe a conduc-
tance step of height 0:5G0. The phonon-induced back-
scattering should then result in a negative correction to
conductance similar to the 0.7 anomaly at B � 0.
However, the experiments [3–5,28,29] do not show an
anomalous plateau at 0:7� �0:5G0�. The likely reason
for the apparent absence of the phonon backscattering
effects is that at temperatures T * TA the electrons in the
channel are no longer completely spin-polarized. Indeed,
in the experiments [28,29] the spin-split conductance
plateau at G � 0:5G0 rises to values about 0:6G0 when
the temperature is increased from 60 mK to 1.5 K, in-
dicating that the second spin-split subband contributes to
the conductance. This conclusion is supported by the
estimate of the spin-splitting g%BB � 3 K in a typical
field B � 10 T. Thus, at a temperature of order TA � 1 K
the second spin-split subband gives a significant positive
contribution to the conductance that compensates for the
decrease in conductance due to the phonons. To observe
the phonon-induced backscattering features in conduc-
tance, magnetic fields significantly higher than 10 T are
required.

In conclusion, we have studied the effect of backscat-
tering of electrons in quantum point contacts by acoustic
phonons. We found a significant negative correction to the
quantized conductance. The correction grows exponen-
tially as a function of temperature or voltage at T;
eV � TA. Above the activation temperature TA, the cor-
rection grows roughly linearly with T and V [Eq. (13)].
Our results are consistent with the experimentally ob-
served features of the conductance near 0:7�2e2=h�.
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